Symmetric and conforming mixed finite elements for plane elasticity using rational bubble functions

نویسندگان

  • Johnny Guzmán
  • Michael Neilan
چکیده

The date of receipt and acceptance will be inserted by the editor Summary We construct stable, conforming and symmetric finite elements for the mixed formulation of the linear elasticity problem in two dimensions. In our approach we add three divergence free rational functions to piecewise polynomials to form the stress finite element space. The relation with the elasticity elements and a class of generalized C 1 Zienkiewicz elements is also discussed.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Lower Order Finite Element Approximations of Symmetric Tensors on Simplicial Grids in R

In this paper, we construct, in a unified fashion, lower order finite element subspaces of spaces of symmetric tensors with square-integrable divergence on a domain in any dimension. These subspaces are essentially the symmetric H(div) − Pk (1 ≤ k ≤ n) tensor spaces, enriched, for each n − 1 dimensional simplex, by (n+1)n 2 H(div) − Pn+1 bubble functions when 1 ≤ k ≤ n − 1, and by (n−1)n 2 H(di...

متن کامل

A Family of Conforming Mixed Finite Elements for Linear Elasticity on Triangular Grids

This paper presents a family of mixed finite elements on triangular grids for solving the classical Hellinger-Reissner mixed problem of the elasticity equations. In these elements, the matrix-valued stress field is approximated by the full C0-Pk space enriched by (k − 1) H(div) edge bubble functions on each internal edge, while the displacement field by the full discontinuous Pk−1 vector-valued...

متن کامل

Non Uniform Rational B Spline (NURBS) Based Non-Linear Analysis of Straight Beams with Mixed Formulations

Displacement finite element models of various beam theories have been developed traditionally using conventional finite element basis functions (i.e., cubic Hermite, equi-spaced Lagrange interpolation functions, or spectral/hp Legendre functions). Various finite element models of beams differ from each other in the choice of the interpolation functions used for the transverse deflection w, tota...

متن کامل

Symmetric Nonconforming Mixed Finite Elements for Linear Elasticity

We present a family of mixed methods for linear elasticity, that yield exactly symmetric, but only weakly conforming, stress approximations. The method is presented in both two and three dimensions (on triangular and tetrahedral meshes). The method is efficiently implementable by hybridization. The degrees of freedom of the Lagrange multipliers, which approximate the displacements at the faces,...

متن کامل

Non-conforming Computational Methods for Mixed Elasticity Problems

Abstract — In this paper, we present a non-conforming hp computational modeling methodology for solving elasticity problems. We consider the incompressible elasticity model formulated as a mixed displacement-pressure problem on a global domain which is partitioned into several local subdomains. The approximation within each local subdomain is designed using div-stable hp-mixed finite elements. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Numerische Mathematik

دوره 126  شماره 

صفحات  -

تاریخ انتشار 2014